
 
 

 
Abstract—A novel and efficient method for calibrating a sensor 
array with position uncertainties is proposed in this paper. The 
method is based on two non-disjoint sources in unknown 
directions and three carry-on instrumental sensors. It can be 
applied to arbitrary array geometries including linear arrays. 
Besides, no small position error assumption is made, which is 
always an essential prerequisite for many existing array shape 
calibration techniques. The new method achieves a favorable 
array shape calibration just using a one-dimensional search, 
with no high-dimensional nonlinear search and convergence 
burden involved. It is also possible to extend the proposed idea 
to tackle the problem of direction dependent gain and phase 
uncertainties. Simulation results are provided to demonstrate 
the effectiveness and behavior of the proposed method.  
 

I. INTRODUCTION 
Since their introduction, high-resolution direction finding 

algorithms such as MUSIC and ML have received significant 
attention. This is due to their potential ability to resolve 
sources separated by less than one standard beamwidth of the 
receiving array, unlike the conventional Fourier-based 
direction finding procedures. Yet despite this potential 
advantage offered by high-resolution methods, their 
application to real systems has been very limited. One of the 
main reasons for this situation is the practical difficulty 
associated with calibrating the array manifold, since the 
performance of these methods depends strongly on the 
accuracy of the array manifold. However, in practice, the 
actual array manifold always differs from the nominal array 
manifold due to sensor position errors, gain and phase 
perturbations, mutual coupling, etc. The presence of these 
unknown calibration errors is the major factor limiting the 
performance of the high-resolution methods in practical 
direction finding system. Hence to achieve high-resolution 
performance, array calibration is always necessary. The 
primary interest of this paper is focused on the sensor 
position errors, although the method proposed here can also 
be easily extended to the case of gain and phase uncertainties.  

Sensor position errors induce the direction dependent 
sensor phase errors to the array manifold so as to exert 
detrimental effects on the performance of the high-resolution 
direction finding algorithms. Various techniques have been 
developed in the literature to circumvent the problem of 
sensor position errors. They are either active and need 
calibrating sources in known directions or passive and rely 
upon the sources present in the field to achieve 
self-calibration. To date, however most of these techniques 
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 work perfectly in the sense that they are unable to 
 acquire satisfactory array shape calibration due to 
gence burden of multimodal nonlinear search [1]-[5], 
ey can, they are either too costly to implement due to 
d of auxiliary calibrating sources in known directions 
 or some certain pathological array-source geometries 
 them at all [9]-[10]. Besides almost all these above 
hape calibrating techniques assume that the position 
ations are relatively small deviations from the 
l positions and thus a first order approximation to the 
ed array response vector is often used to simplify the 
ion procedures. However, many simulation results in 
w that these techniques fail under even moderate 
ation errors. The motivation of this paper is to attempt 
gest an efficient and relatively inexpensive and 
al scheme for the array shape calibration.  
scheme proposed here needs two non-disjoint sources 
own directions. It relaxes the small error assumption 

arch convergence burden. The ambiguity problem of 
rray identified in [9]-[10] can also be mitigated. The 
rice paid for above merits is that three carry-on 
ental sensors are needed to work as coordinate 
ce and at the same time introduce some more degrees 
dom to tackle the identifiability problem associated 
e linear array.  

II. PROBLEM  FORMULATION  
sider an array of K sensors of arbitrary geometry 
ed by M=2 uncorrelated sources from far field in 
n directions at [ ]Tθ,θ 21=θ .The signal waveforms 

umed to be narrowband of known center frequency. 
tual positions of these K sensors differ from their 
l positions. In addition, we have three carry-on 
ental sensors, whose positions are assumed precisely 

 and one of which is chosen as the origin of the 
ates. As a result, an array of N=K+3 sensors is formed. 

mplex envelope of the noise-corrupted N sensors array 
vector ( )tX may be written as (1): 

( ) ( ) ( ) ( ) LtttSt ,2,1=+= NθAX             (1) 
re ( )tS  is a M×1 signal vector, ( )tN  is a N×1 noise 
 It is assumed that the signals and noises are stationary, 
ean uncorrelated Gaussian random processes and 

, the noises are both spatially and temporally white 
ariance 2σ .Array manifold matrix ( )θA  is N×M 
whose columns are the steering vectors. In the 
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presence of sensor position uncertainties, the N×1 steering 
vector ( )mθW  can be modeled as (2): 

( ) ( ) ( ) 21,mθθθ mmm == aΓW                      (2) 
where ( )mθa  is the ideal steering vector corresponding to 
array nominal positions and can be expressed as (3)-(4) : 

( ) 21221 2 ,mτ
λ
πjexp,,τ

λ
πjexp,θ mNmm =




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


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−=a       (3) 

[ ] ( ) ( )[ ] N,,nθcosθsiny,xτ T
mmnnmn 21==      (4) 

λ  is the wavelength of the signal, [ ]nn yx  is the nominal 
co-ordinates of the nth sensor with respect to the reference 
sensor. Further, ( )mθΓ  is a N×N complex diagonal matrix 
whose nnth entries are the angularly dependent phase 
distortion induced by the nth sensor position error and it can 
be written as (5)-(6): 

( ) 21221 2 ,mτΛ
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πjexp,,τ∆

λ
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[ ] ( ) ( )[ ] N,,nθcosθsiny∆,x∆τ∆ T
mmnnmn 21==  (6) 

where [ ]nn y∆x∆ are the position disturbance associated with 
the nth sensor. 

The array covariance matrix and its eigendecomposition 
are expressed as follows: 

( ) ( )[ ] IAARXXR 2H
S σttE H +==           (7) 
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where { }121 +≥= iii λλ;N,,,i;λ and { }N,,,i;i 21=e are 
ordered eigenvalues and corresponding eigenvectors of R 
respectively. The signal subspace and noise subspace of R are 
respectively the ranges of the matrices: 

[ ]M21s e,e,eE =                             (9) 
[ ]N2M1MN e,,e,eE ++=                        (10) 

The problem of interest here is as follows: given L array 
snapshots ( ) L,,,ttX 21= , estimate the unknown DOAs of 
sources, as well as the unknown sensor position uncertainties 
of the K sensors, [ ] N,,ny∆x∆ nn 54=  ( )3+= KN . 

III. ALGORITHM  DESCRIPTION 
Since we have 3 instrumental sensors with no sensor 

position uncertainties, the first 3 diagonal entries of matrix 
( )θΓ  are all reduced to 1. The ideal steer vector ( )θa and 

phase distortion matrix ( )θΓ  can be partitioned as follows:  

( ) ( ) ( )[ ]TTT θθθ 21 aaa =                      (11) 

( ) [ ][ ]T)(vecddiagθ 231 Γ1Γ ×=              (12) 
where the 13× vector ( )θ1a and 1×K vector ( )θ2a  are formed 
from the part of the elements of ( )θa  corresponding to the 
instrumental sensors and the position-disturbed sensors 
respectively. Similarly, the diagonal entries of K×K diagonal 
matrix ( )θ2Γ  consist of the unknown direction dependent 
phase uncertainties induced by the corresponding 
position-disturbed sensors. Then the steer vector ( )θW  can 
be reformulated as follows: 
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( )θα~ is a ( )1+× KN  matrix while ( )θδ is a 
1× vector. [ ]νdiag  denotes a diagonal matrix whose 

al entries is formed from the elements of vectorν  and 

] denotes a column vector where the diagonal 

ts of A form the vector. 
underlying basis for subspace-based DOA estimation 
hms is the orthogonality between the noise subspace 
nal subspace of array covariance matrix R, which 

that 
( ) ( ) 0=θθ WEEW H

NN
H                      (14) 

titution of (13) into (14) yields (15-17): 
( ) ( ) ( ) ( ) 0~~ =θθθθ δαEEαδ H

NN
HH                 (15) 

( ) ( ) ( ) 0=θθθ δQδH                            (16) 

( ) ( ) ( )θθθ αEEαQ H
NN

~~ H=                      (17) 
( )θQ is a ( ) ( )11 +×+ KK  Hermitian matrix. Since the 
0 , (16) means that the matrix ( )θQ is singular, 

( )[ ] 1+< KQk θ . Note that under the condition that 
anifold ( ){ }22: πθπθ ≤≤−W is unambiguous, the 
( )θQ  is singular or rank reduction if and only if 

2,1=iiθ , since the dimension of signal subspace of R 
sed on this idea, we develop a DOA estimator as (18) 

 and a array shape calibration algorithm as (20)-(26): 
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π
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NÊ denotes the finite sample estimate of noise 

ce NE . ( )[ ]θλ Q̂min is the smallest eigenvalue of the 

( )θQ̂ , ( )[ ].ˆˆ
min θQe is the eigenvector corresponding to 

allest eigenvalue of the matrix ( )θ̂Q̂  and the 

( )]θ is the determinant of the matrix ( )θQ̂ . 

 (18)-(26), we observe that the DOA estimation and 
hape calibration can be achieved simultaneously just 



 
 

using an one-dimensional search over FOV(Field of view) of 
array. Besides with uniform linear array, due to the 
Vandermonde structure of the ideal steering vector, a 
polynomial rooting with degree of 4 can also be utilized in 
light of the idea behinds ROOT-MUSIC algorithm.  

Although the small position error assumption is not made 
in the above shape calibration algorithm, it is always assumed 
that the position uncertainties are not large to such an extent 
that the phase delay ambiguity identified in [11] is present. 

Finally, it is obviously that the idea proposed here can 
easily be extended to array calibration in the presence of 
direction dependent gain and phase calibration. 

IV. SIMULATION  RESULTS 
In this section, simulation results are presented to illustrate 

the performance of the new algorithm. Simulations are 
carried out for a nominal uniformly linear array of 16 sensors 
with one half-wavelength inter-sensor spacing. Three 
instrumental sensors are added to form a nominal uniformly 
linear array of 19 sensors. The corresponding reference 
coordinate system, nominal array geometry and perturbed 
array geometry are shown in the fig.1. The actual sensor 
positions are arbitrarily fixed and allowed to randomly vary 
from the nominal sensor positions within the range ± 0.5 λ in 
Y-coordinates and ± 0.25 λ  in X-coordinates. Two 
narrowband uncorrelated sources with equal power impinge 
on the array, from the far filed, at distinct 
directions °30 and °40 w.r.t the broadside of array. The 
SNR=20dB is defined as the ratio of each signal power to the 
noise power at each sensor. 200 snapshots are used to 
estimate the array covariance matrices. The number of 
sources is assumed known. 

Fig.2 shows the spatial spectra obtained form the new 
algorithm (18). In table 1-2, we also demonstrate the 
estimated value and real value of the sensor positions. 

From the results presented above and many other 
simulations with similarly favorable results, it can be 
concluded that the array shape calibration algorithm 
proposed here provides us an efficient and relatively 
inexpensive array shape calibration scheme. 

V. CONCLUSION 
In this paper, we propose an efficient array shape 

calibration algorithm by using two non-disjoint sources in 
unknown direction and three instrumental sensors. It can be 
applied to arbitrary array geometries including linear arrays. 
The new method is computationally abstractive and relatively 
inexpensive. Besides, small position error assumption is 
relaxed to meet the need of array shape calibration in the 
presence of large position errors. Without any modification, 
the idea proposed here can also be extended to the array 
calibration in the presence of direction dependent gain and 
phase uncertainties.  
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Fig. 1.  Reference array coordinate system 
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ig. 2.  Spatial spectrum acquired with new method 

 
 



 
 

 
 
 
 

TABLE 1  
ESTIMATED X-COORDINATES 

 

 
 

TABLE 2  
ESTIMATED Y-COORDINATES 

 

Coordinate
s Nominal Actual Estimated 

X4 1.5 1.3454 1.3354 
X5 2.0 2.1719 2.1783 
X6 2.5 2.3370 2.3403 
X7 3.0 2.8354 2.8450 
X8 3.5 3.7471 3.7465 
X9 4.0 3.9699 3.9840 

X10 4.5 4.4200 4.4321 
X11 5.0 4.9071 4.9029 
X12 5.5 5.4325 5.4262 
X13 6.0 5.9466 5.9390 
X14 6.5 6.5458 6.5479 
X15 7.0 6.8099 6.8093 
X16 7.5 7.2691 7.2664 
X17 8.0 7.9793 7.9755 
X18 8.5 8.6849 8.6864 
X19 9.0 9.2171 9.2150 

Coordinate
s Nominal Actual Estimated 

Y4 0 -0.2356 -0.2257 
Y5 0 -0.3397 -0.3426 
Y6 0 0.3729 0.3721 
Y7 0 -0.2621 -0.2687 
Y8 0 0.1458 0.1447 
Y9 0 0.4669 0.4560 

Y10 0 0.1649 0.1547 
Y11 0 0.3704 0.3711 
Y12 0 -0.4901 -0.4884 
Y13 0 -0.3630 -0.3602 
Y14 0 0.3188 0.3151 
Y15 0 -0.0698 -0.0706 
Y16 0 0.3903 0.3921 
Y17 0 0.2349 0.2389 
Y18 0 0.1873 0.1888 
Y19 0 -0.1539 -0.1521 
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